Extensions 1→N→G→Q→1 with N=C7:D4 and Q=C23

Direct product G=NxQ with N=C7:D4 and Q=C23
dρLabelID
C23xC7:D4224C2^3xC7:D4448,1384

Semidirect products G=N:Q with N=C7:D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C7:D4:1C23 = C22xD4xD7φ: C23/C22C2 ⊆ Out C7:D4112C7:D4:1C2^3448,1369
C7:D4:2C23 = C22xD4:2D7φ: C23/C22C2 ⊆ Out C7:D4224C7:D4:2C2^3448,1370
C7:D4:3C23 = C2xD4:6D14φ: C23/C22C2 ⊆ Out C7:D4112C7:D4:3C2^3448,1371
C7:D4:4C23 = C2xD7xC4oD4φ: C23/C22C2 ⊆ Out C7:D4112C7:D4:4C2^3448,1375
C7:D4:5C23 = C2xD4:8D14φ: C23/C22C2 ⊆ Out C7:D4112C7:D4:5C2^3448,1376
C7:D4:6C23 = D7x2+ 1+4φ: C23/C22C2 ⊆ Out C7:D4568+C7:D4:6C2^3448,1379
C7:D4:7C23 = C22xC4oD28φ: trivial image224C7:D4:7C2^3448,1368

Non-split extensions G=N.Q with N=C7:D4 and Q=C23
extensionφ:Q→Out NdρLabelID
C7:D4.1C23 = C2xD4.10D14φ: C23/C22C2 ⊆ Out C7:D4224C7:D4.1C2^3448,1377
C7:D4.2C23 = C14.C25φ: C23/C22C2 ⊆ Out C7:D41124C7:D4.2C2^3448,1378
C7:D4.3C23 = D14.C24φ: C23/C22C2 ⊆ Out C7:D41128-C7:D4.3C2^3448,1380
C7:D4.4C23 = D7x2- 1+4φ: C23/C22C2 ⊆ Out C7:D41128-C7:D4.4C2^3448,1381
C7:D4.5C23 = D28.39C23φ: C23/C22C2 ⊆ Out C7:D41128+C7:D4.5C2^3448,1382
C7:D4.6C23 = C2xQ8.10D14φ: trivial image224C7:D4.6C2^3448,1374

׿
x
:
Z
F
o
wr
Q
<